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Summary

Over the past few decades, one of the most salient lifestyle

changes for us has been the use of computers. For many
of us, manual interaction with a computer occupies a large

portion of our working time. Through neural plasticity, this
extensivemovement training should change our representa-

tion of movements (e.g., [1–3]), just like search engines
affect memory [4]. However, how computer use affects

motor learning is largely understudied. Additionally, as
virtually all participants in studies of perception and actions

are computer users, a legitimate question is whether in-
sights from these studies bear the signature of computer-

use experience. We compared non-computer users with
age- and education-matched computer users in standard

motor learning experiments. We found that people learned
equally fast but that non-computer users generalized signifi-

cantly less across space, a difference negated by two weeks
of intensive computer training. Our findings suggest that

computer-use experience shaped our basic sensorimotor

behaviors, and this influence should be considered when-
ever computer users are recruited as study participants.

Results and Discussion

The average computer user produces 7,400 mouse clicks per
week [5]. Computer use often involves globally linear transfor-
mations between the bodymovement and its screen represen-
tation, e.g., the mapping from hand movement to mouse
cursor position. Hence, with long-term interaction with mice,
computer users probably develop an expectation that visuo-
motor transformation between hand movement and its screen
representation should remain consistent across work space.
Hence, in line with recent findings that prior experience affects
motor control [6–9], and motor generalization in particular
[10, 11], our working hypothesis is that people without com-
puter experience will generalize more locally in visuomotor
learning and that this difference should be negated with
computer-use training.

To assess how such movement behaviors are affected by
computer use, we recruited 18 Chinese migrant workers,
nine of them being regular computer users (control group,
age 41.9 6 8.9 years) and nine of them never having used a
computer before (non-computer-user group, age 38.2 6 10.1
years). We also assembled a control group made up of nine
college students (student group, age 21.9 6 2.4 years). All of
these naive subjects were tested with a standard visuomotor
*Correspondence: wei.kunlin@pku.edu.cn
gain adaptation experiment [12, 13] in which subjects learned
to move a cursor while their hand was hidden from view (Fig-
ure 1A). The gain between the hand displacement and the
cursor displacement was modified in the training direction
(Figure 1B). Subjects adapted to this visuomotor gain change
and were subsequently tested in other directions to assess
their directional generalization.
So how does computer use affect movement behavior?

It affected neither the speed of learning [F(8,18) = 0.91, p =
0.53, one-way ANOVA] nor the degree of learning [F(8,18) =
0.77, p = 0.64; Figure 2A]. However, the computer users,
compared to the non-computer-user group, generalize much
more into other directions [interaction effect F(8, 96) = 6.9,
p < 0.0001; main effect on groups F(2, 24) = 12.5, p < 0.0001,
two-way ANOVA; Figure 2B]. Interestingly, non-computer
users still have a broad generalization as their generalization
is significantly larger than zero even at the largest angular sep-
aration of 180� (30.0% 6 6.9%; p < 0.001, one-sample t test).
There is no difference between the computer group and the
student group, suggesting that subjects of different ages
behave similarly as long as they are computer users.
To establish the causal relationship, we recruited another

group of ten non-computer users and examined their general-
ization before and after intensive computer-use training. We
realized that our movement interaction with computer is
mostly via a computer mouse; this interaction involves a map-
ping between a movement space and a visual space, rather
similar to experimental setting in our and others’ studies. We
thus chose to give subjects intensive training on using com-
puter mouse. Before training, their generalization was again
quite narrow and their generalization was not significant from
that of the non-computer-user group in experiment 1 [Fig-
ure 3A; two-way mixed-design ANOVA, main effect on groups
F(1,17) = 0.24, p = 0.63 and interaction effect F(4,68) = 0.25, p =
0.92]. In the following 2 weeks, participants were instructed to
play computer games (e.g., Pong) that require intensivemouse
use for 2 hr each day.We also tested their mouse-use ability by
asking them to track a moving cursor with mouse cursor (Fig-
ure 3B, inset). This tracking task was performed before and
after training on each day. The overall tracking error was
reduced across days (Figure 3B). More importantly, partici-
pants exhibited significantly larger generalization when they
were tested again after 14-day training (Figure 3A). Two-way
repeated-measures ANOVA revealed significant main effect
on timing [before versus after training, F(1,9) = 13.08, p <
0.01] and significant interaction effect [F(4,36) = 9.48, p <
0.0001]. The generalization was significantly higher at all but
the 0 angular separations (p < 0.01 or p < 0.005 for simple
main effect tests). Two weeks of computer training converted
the generalization patterns into those of computer users.
In summary, computer use leaves learning speed unaffected

but leads to enhanced generalization into untrained directions.
A possible reason for this change is that the gain mapping
betweenmousemovements and cursor movements is uniform
across different directions. Thus, long-term exposure to this
sensorimotor mapping leads to our prior expectation of
consistent transformation betweenmanual actions and screen
representations across directions. This prior expectation, in
turn, leads to broad generalization in similar task settings.
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Figure 1. Experimental Setup and Data from a

Typical Subject

(A) Illustration of experimental setup and move-

ment targets arranged on the screen. With per-

turbed visuomotor gain, the terminal feedback

is shown 1/0.6 further from the actual reach

endpoint, i.e., people only need to move the

unseen hand 48 mm to reach 80 mm targets.

This terminal feedback is only shown for the

training direction. Thus, subjects only learned

this sensorimotor gain in one direction and were

then asked to generalize to other directions.

(B) Movement distance of all the reaches to the

training target from a typical subject. The gain is

1 during the familiarization and the baseline

phases and is 0.6 during the training (with feed-

back) and the generalization phase (without feed-

back). The distances of reaches to other targets

(not shown) reflect how subjects generalize.
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We postulate that this enhanced generalization is specific for
visuomotor learning since computer use extensively involves
visuomotor transformation. Furthermore, it has been shown
that altered motor generalization in some neuropathological
population is also task specific [14].

It is interesting to note that normal participants (i.e., com-
puter users) have a much broader generalization for visuomo-
tor gain learning as compared to visuomotor rotation learning,
another type of visumotor transformation (e.g., [15]). Can com-
puter use explain this discrepancy? Our data show that non-
computer users exhibit broader generalization in gain learning
than computer users in rotation learning, i.e., their gain gener-
alization is significant even at 180� angles, in which rotation
generalization is supposed to be absent. This suggests that
computer use alone cannot explain the discrepancy between
these two types of motor generalization. This behavioral
distinction is consistent to the neurophysiological findings
that separate neural substrates supports these two types of
visuomotor learning [16].

Similar to existing studies on visuomotor generalization
[3, 12, 17–22], we have analyzed the generalization of rather
artificial movements on a plane. It is well possible that com-
puter use is more important for such artificial movements
than it would be for natural movements. However, our study
informs the interpretation of the work that has been done so
far. Future work can reveal how important naturalness is for
the effects of generalization [10] and the importance of com-
puter use in such a context.

The way subjects learn and generalize is often viewed as a
reflection of the fundamental neural representation of move-
ment [23–29]. Particularly, people usually reported limited
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generalization in various motor learning tasks [3, 17–19, 21,
30–32], and these patterns have been quantified to probe neu-
ral representations of movement learning (e.g., [3, 11, 17–20,
26, 30–35]). Hence, our findings suggest that computer use,
through neural plasticity, changes movement representations.
Our results also suggest that in typical movement experi-
ments, at least those involving visuomotor perturbations,
computer use affects the results. It is thus important to be
cautious in generalizing behavioral findings on computer users
to the overall population, just as psychologists recently
acknowledged that data from selected western subjects is
not broadly representative across populations [36]. Computer
use not only changes our lifestyle, but it also appears to funda-
mentally affect the neural representation of our movements.
Experimental Procedures

All subjects were naive to our research purpose and they provided written

consent before experiments. All procedures were approved by the institu-

tional review board of Peking University. Experiment 1 was a cross-

sectional experiment with a non-computer-user group (eight females and

one male; age 38.2 6 10.1 years; education 4.9 6 2.1 years), an age- and

education-matched control group (eight females and one male, age

41.9 6 8.9 years; education 6.6 6 2.5 years), and a student group (seven

females and two males; age 21.9 6 2.4 years; education 15.3 6 1.9 years).

Experiment 2 was a longitudinal experiment in which ten non-computer

users were recruited (ten females; age 38.7 6 7.9 years; education 7.9 6

3.1 years). Their motor generalization was accessed before and after

14 days of computer training. All subjects were screened for their computer

use experience. Non-computer users were determined by one-on-one inter-

view, and they were required to use a computer mouse to open a file folder

placed on the desktop of a Windows PC. They usually had trouble maneu-

vering the mouse to move the cursor, a hallmark of no experience of
90 135 180
arations (deg)
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Figure 2. Same Learning Speeds but Different

Generalization

(A) Average learning data during the training

phase. The error bars indicate the SEM across

subjects. Solid lines are fitted exponential

learning curves.

(B) The generalization as a function of differ-

ence in direction is assessed. The difference

between computer-user groups and the non-

computer-user group was significant at distant

angles (*p < 0.005, **p < 0.001, simple main

effect with Bonferroni correction).
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Broad Generalization Curves

(A) The generalization as a function of difference

in direction before and after computer-use

training. The difference induced by computer-

use training was significant at distant angles

(*p < 0.01, **p < 0.005, simple main effect).

(B) Themouse tracking error was reduced over 14

training days. The upper end of each vertical line

denotes the error before training on each day and

the lower end the error after the training. The

width of gray horizontal lines denotes intersub-

ject variance (SEM). The trajectory of the moving

target (black) and the mouse cursor trajectory of

an exemplary trial (green) are shown in the inset.
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interacting with computers. All experiment sessions were scheduled during

the day. For quantifying generalization, subjects sat behind a desk and

moved their right, dominant hand on the desktop. Their vision of the hand

was blocked by a mirror placed horizontally at chest level. The movement

of the index finger tip was measured at a frequency of 200 Hz (Codamotion,

Charnwood Dynamics). Visual feedback was projected on a vertically

placed back-projection screen about 100 cm in front of the subject. On

the screen, eight visual targets were arranged on an 80-mm-radius circle

and separated 45� apart (Figure 1A). At the beginning of each trial, subjects

rested their index finger on a 4-mm-thin, smooth plastic disc glued on the

desktop. This disc facilitated subjects returning to the center of the target

circle without visual guidance. Once the finger was still for 100 ms, one of

the targets was highlighted to signal subjects to move their hand from the

center to the target. A cursor, representing the finger position, was only

visible within 1 cm around the circle center. On selected trials (see below),

the cursor would reappear when the reach stopped, and this terminal feed-

back indicated the distance traveled by the finger/cursor. A beep, played at

the trial end, signaled the subject to bring the finger back to the starting

position for the next trial.

The assessment of generalization was conducted with four phases of

trials (Figure 1B). In the familiarization phase, subjects moved to each target

six times in a random sequence with terminal feedback. In the baseline

phase, trials were organized in 50 blocks of nine trials: every target was

shown once, with the exception of the training target (the upper-left target),

which was shown twice. The terminal feedback was presented only for the

reaches to the training target. For both familiarization and baseline phases,

the gain between the hand movement and the cursor movement was 1, i.e.,

the terminal feedback was veridical. In the training phase, subjects reached

to the training target with terminal feedback for 30 consecutive trials. Impor-

tantly, the gain was modified from 1 to 0.6, creating a visuomotor perturba-

tion. With this perturbation, subjects only needed to move 48 mm to reach

the target. The last generalization phase was identical to the baseline phase

except that the gain was kept at 0.6. As subjects never received visual feed-

back for reaches to targets other than the training target, we could assess

their transfer of learning from the training direction to other directions.

The amount of generalization is quantified as

Generalization%=
Dgeneralization 2Dbaseline

Dbaseline 3 ð12 0:6Þ 3 100%;

where Dgeneralization and Dbaseline are average movement distances in the

generalization phase and in the baseline phase, respectively. This general-

ization percentage was calculated for each direction separately and ex-

pressed as a function of angular separation from the training direction

(Figure 2B). Subjects exhibited typical exponential learning during the

training phase (Figure 2A). We fitted the learning data with an exponential

function y = a3e2 ðt=tÞ +b, where t denotes the learning rate and b denotes

the achieved learning level. When fitting parameters for each subject, we

set the initial value of b at the learning achieved at the end of the training

session (average error of the last three training trials). a was not a free

parameter, but rather the actual learning achieved during training; it was

calculated for each participant as the average error before training (average

of the last three baseline trials) minus the average error after training

(average of the last three training trials).

The computer training in experiment 2 involved subjects playing simple

flash-based computer games that require frequent and precise mouse

cursor movements, 2 hr each day for 14 consecutive days. Subjects were

allowed to switch between eight types of games and to take a break at their
convenience. For quantification of their improvement in using computer

mouse, on each training day subjects also performed a modified pursuit

rotor task, which required them to use mouse cursor to track a moving

target on the computer monitor. Themovement of the target followed a pre-

defined trajectory whose horizontal position was a sine function (0.3 Hz; 261

pixels in amplitude) and vertical position a sum of three sine functions (0.3,

0.6, and 0.9 Hz; 150 pixels in amplitude). On the screen, this tracking target

spanned 522 and 750 pixels horizontally and vertically, respectively. Impor-

tantly, it moved with unpredictable and varying speeds (mean 6 SD: 545 6

293 pixels/s) and thus discouraged subjects to improve the performance by

simply remembering the trajectory. This task was organized as 20 s trials,

five trials before and after the training on each day. The average, absolute

distance between the target and the mouse cursor was computed as

tracking error. The trainingwas conducted in a lab setting under supervision

of the experimenters.

For experiment 1, between-group comparisons of generalization was per-

formed with a two-way mixed-design ANOVA (three groups 3 five angular

separations). Comparisons of learning rate and learning extent were per-

formed with one-way ANOVA. For experiment 2, within-group comparisons

between before- and after-training generalization was performed with a

similar but repeated-measures ANOVA (two timing 3 five angular separa-

tions). Across-experiment comparisons between two non-computer-user

groups were conducted via a two-way mixed-design ANOVA (two groups3

five angular separations). For both experiments, comparisons of generaliza-

tions between groups (experiment 1) and between times (pre- and posttrain-

ing) at specific angular separations were performed using simple main

effects with Bonferroni correction. Data entering two-way ANOVA tests

were checked for normality. The significance level was set at a = 0.05.
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